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Abstract
Composite systems, where couplings are of two types, a combination of
strong dilute and weak dense couplings of Ising spins, are examined through
the replica method. The dilute and dense parts are considered to have
independent canonical disordered or uniform bond distributions; mixing the
models by variation of a parameter γ alongside inverse temperature β we
analyse the respective thermodynamic solutions. We describe the variation in
high temperature transitions as mixing occurs; in the vicinity of these transitions
we exactly analyse the competing effects of the dense and sparse models. By
using the replica symmetric ansatz and population dynamics we described the
low temperature behaviour of mixed systems.

PACS numbers: 75.50.Lk, 75.10.Nr, 05.20.−y, 64.60.F−
(Some figures in this article are in colour only in the electronic version)

1. Introduction

Understanding phenomena arising in many body systems through mean field analysis of
simple models has provided insight into many problems in physics, theoretical computer
science, telecommunication, biology and elsewhere [MPV87, Nis01]. Statistical mechanics
describes aspects of macroscopic behaviour in interacting systems of many elements, and
methods originating in the study of spin-glasses (SG) have been extended to explore many
interesting model disordered systems. These statistical descriptors of behaviour often prove to
be a sufficient descriptor of all interesting bulk behaviour; in some applications, such as channel
coding and theoretical computer science, they also provide benchmarks even where the large
system is relatively small and the randomness assumed does not quite match the true system
conditions. Moreover, methods developed within the statistical physics community gave
rise to the development of efficient inference algorithms widely used in telecommunication,
probabilistic modelling and theoretical computer science.

Many of these models consider range-free interactions of a single topological type, most
commonly nearest neighbour interactions in finite dimensional, fully connected, or sparse
random graphs. Even in systems not conforming strongly to the particular topology, insight
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into many phenomena can be obtained and the formulations can allow for exact analysis.
We propose that certain systems may be well described by a combination of two canonical
topologies—such a property may be phenomenological or could be a deliberately engineered
feature of a system.

Amongst the best understood topologies are those amenable to mean-field theory models
that are infinite dimensional. The canonical mean field model is that of a fully connected
graph. This model may be analysed exactly for the cases of uniform interactions and
certain random ensembles, most famously the celebrated Sherrington–Kirkpatrick (SK) model
[SK75]. Simplification of the analysis in the disordered case is often possible through noting
the ability to describe many combinations of interactions by a Gaussian due to the central
limit theorem. The sparse mean-field model has each spin coupled only to a small number
of other spins. This creates a topology that is also described as infinite dimensional though
the model is perceived as more representative of most complex systems due to some notion of
a neighbourhood being maintained. Analysis is simplified by utilizing the asymptotic cycle
free property (Bethe approximation) of certain random graph ensembles. Models which do
not allow use of the Bethe approximation or central limit theorem are in general difficult to
analyse.

The motivation for studying this system is that it is amongst the simplest composite models
involving a combination of dilute and dense couplings. We anticipate the understanding
of these systems to be important in engineering applications. With miniaturization of
technology, for example computer chips, the paradigm by which the interaction amongst
components can be strictly controlled may be invalid. Modelling the effect of non-engineered
couplings by independent noise may be invalid in some scenarios, as it is possible that these
additional interactions form a strongly correlated network allowing for example non-trivial
phase transitions or metastable features. There is also the possibility that systems may be
engineered deliberately with a combination of dilute strong, and weak dense interactions
either to make them more robust or to exploit specific properties of the composite system.
In multi-user channel coding, for instance, this may make the communication process more
robust against different types of noise, de-synchronization or malicious attacks. Only recently,
a special case of the system studied here was suggested as a model for studying the resilience
of networks against attacks [HM].

The paper is organized as follows. In section 2 we introduce the model studied and basic
definitions, followed by an analysis section 3 that explains briefly the derivation based on the
replica method. In sections 4 and 5 we investigate the high and low temperature solutions,
respectively, followed by a discussion of the numerical solutions obtained via population
dynamics section 6. Finally, we present our conclusions in section 7.

2. The model

We present analysis for an ensemble of disordered systems of N Ising spins si = ±1. The
couplings consists of a strong part which is non-zero on only a fraction ρN/2 of the possible
links, and a weak part which is present on all links, this defines the Hamiltonian consisting of
sparse and dense parts

H(S) = HS(S) + HD(S) +
∑

i

hiSi (1)

along with an external field. The dense and sparse parts are taken to be

HD(S) = −
∑
〈ij〉

bibjJ
D
〈ij〉σiσj , HS(S) = −

∑
〈ij〉

bS
i bS

j A〈ij〉J S
〈ij〉σiσj , (2)

2



J. Phys. A: Math. Theor. 41 (2008) 324014 J R Raymond and D Saad

where 〈〉 indicates the set of ordered (distinct) indices throughout the paper. Components of
the sparse connectivity matrix A take the value 1 if a link exists between the corresponding
sites and zero otherwise; the coupling matrix J takes random values from a given distribution
and b determines an artificial disorder (alignment) in the coupling strengths, analogous to the
Mattis model [Mat]. For our analysis we can take bS = 1 since only the relative alignment is
influential in determining system properties.

2.0.1. Mixing of models. In order to investigate the combination of these subsystems we
propose the introduction of two parameters, an inverse temperature β, and a mixing parameter
γ ∈ (0, 1). The mixing parameter acts so that the couplings in the sparse part increase
monotonically from zero with γ to their full value, conversely the couplings of the dense part
decrease monotonically to zero. There is some flexibility in how this might be applied, for
example if the couplings decrease/increase linearly with γ one may write the Hamiltonian as

H(S) = γHS(S) + (1 − γ )HD(S) +
∑

i

hiSi . (3)

This is the simplest composition method we may use but alternative rescalings of the couplings
may also be sensible. Unattractive features include that the ratio of variance to mean (J0/J̃ )

in coupling strengths is not maintained as γ varies.
The mixing of models by rescaling of the couplings is not a unique way to consider the

composition of two such systems. A sensible alternative valid in some composite systems
would be a doping one, keeping the dense part constant and gradually introducing additional
sparse bonds (variation of A) [HM].

2.0.2. Definition of the ensemble. We consider different ensembles determined by a set
of parameters I = {J0, J̃ , ρ, φ, hS, hD, χ, b̄} defined as follows. The model consists
of independently generated dense and sparse subsystems. Dense Couplings are sampled
independently for each link from a distribution of mean J0bibj /N and variance J̃ /N and
non-divergent higher moments (the scaling in N is standard [SK75]). The Mattis model-like
part b describes some non-trivial orientation of the spins with bi = ±1 sampled independently
at each site according to the mean b̄. For the sparse part we have that the connectivity matrix,
A, is a sample from an Erdös–Renyi random graph ensemble [ER70] of mean connectivity ρ

with couplings sampled independently for each link from a distribution on the real line, φ, with
non-divergent moments, and vanishing measure on zero. The external fields are sampled for
each site from a distribution of mean hS +bih

D , and variance χ2, the parameters hS, hD and χ2

are conjugate variables in the free energy to the order parameters for sparse and dense aligned
ferromagnetic moments, and the spin glass moment.

The model contains a wide range of parameters which we believe are sufficient to describe
the mixing of many canonical Ising spin mean-field models. In the case of γ → 0 the model
reduces to the SK-model [SK75] (up to artificial disorder), whereas at γ → 1 the model
is Viana–Bray (VB) [VB85]. By tuning parameters one can also find the ferromagnetic,
antiferromagnetic and Mattis models [Mat], the relevant orientation in mixing (b̄) proves
important in determining system properties. Small perturbations of the SK and VB models
by random Hamiltonians is a subject much studied, especially in the context of temperature
variation and stochastic stability [BS07, Par, Tal03]. We understand that the set of perturbations
represented by variation of an infinitesimal variation of γ from 0 or 1 probably falls into the
classes which are incapable of changing the structure of thermodynamic states—provided we
break any interaction symmetries by addition of small external fields, and so we expect no
transitions in these limits, which is both an observed and intuitive assumption.
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3. Replica method and exact analysis

3.1. Self-averaged free energy calculation

The analysis is rather standard and is carried out by the replica method, we note only important
key steps and definitions in this section. Details of the derivation are found in appendix A.
Throughout analysis we consider only the leading order contribution, in N, to the free energy
density, and in all coefficients we assume the asymptotic value in n where possible for brevity.
We first write the free energy function making use of the replica trick [MPV87].

f = lim
N→∞

− 1

βN
log

∑
Si ,...,SN

exp{−βH(S1, . . . , SN)},

= lim
N→∞

− 1

βN
lim
n→0

∂

∂n

n∏
α=1

⎡
⎣ ∑

Sα
i ,...,Sα

N

exp
{−βH

(
Sα

1 , . . . , Sα
N

)}⎤⎦ . (4)

We are interested in the behaviour of a particular sample drawn from the ensemble described
by the parameters I. We anticipate that a sufficient description of any typical instance will be
given by the free energy averaged over instances of the disorder (self averaging assumption).

After taking the quenched averages of couplings and some manipulation of the equation
form we are able to describe the self averaged free energy density by

〈f 〉 = lim
N→∞

− 1

βN
lim
n→0

∂

∂n

∫
d	 d	̂ exp{−N
(n, I,	, 	̂)}, (5)

where 	, 	̂ = {
π(σ), π̂(σ), q̄α, ˆ̄qα, q〈α1α2〉, q̂〈α1α2〉

}
are the set of integration variables

introduced to allow exact site factorization. These may be invoked as order parameters
for various phases. Considering only leading order terms in N one can present, 
 is in the
general composite case of two types of disordered couplings


 = −
∑

α

ˆ̄qαq̄α −
∑

〈α1α2〉
q〈α1α2〉q̂〈α1α2〉 −

∑
σ

π(σ)π̂(σ) − log

〈∑
σ

exp{X }
〉

b

− ρ

2

∑
σ1,σ2

π(σ1)π(σ2)

⎛
⎝〈

exp

{
βx

∑
α

σα
1 σα

2

}〉
φ(x)

− 1

⎞
⎠ − β2J̃

2

⎡
⎣1

2
+

∑
〈α1α2〉

(
q〈α1α2〉

)2

⎤
⎦

− βJ0

2

∑
α

(q̄α)2 − β
∑

α

(
hS

∑
σ

π(σ)σ α + hDq̄α

)
− β2χ2

⎛
⎝1

2
+

∑
〈α1α2〉

q〈α1α2〉

⎞
⎠ ; (6)

X = −
∑

α

ˆ̄qαbσα −
∑

〈α1α2〉
q̂〈α1α2〉σ

α1σα2 − π̂(σ). (7)

The scaling with γ is absorbed in the coupling distribution φ, J0 and J̃ .
From here it is possible to evaluate the integral by the saddle point method anticipating

the large N limit. The self-consistent equations obtained by the extremization of the exponent
may be evaluated exactly at high temperature and by a qualified approximation at lower
temperature. The saddle point equations for the order parameters are

q̄α = N
〈∑

σ

bσα expX
〉

b

; ˆ̄qα = −βJ0qα − βhD (8)

q〈α1α2〉 = N
〈∑

σ

σα1σα2 expX
〉

b

; q̂〈α1α2〉 = −β2J̃ q〈α1α2〉 − β2χ2 (9)
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π(σ) = N 〈expX 〉b ;

π̂(σ1) = −ρ
∑
σ2

π(σ2)

⎛
⎝〈

exp

{
βx

∑
α

σ α
1 σα

2

}〉
φ(x)

− 1

⎞
⎠ − βhS

∑
α1

σα1 (10)

N =
〈∑

σ

exp χ

〉−1

b

from which the conjugate order parameters 	̂ may be eliminated. This representation is
convenient for making general ansatze [Mon98] on the order parameters in (40).

3.2. Alternative formulation

It is useful to represent the exponent (6) by choosing a standard parameterization for π

allowing components to be associated with different types of order. One can equivalently
generate this representation directly by choosing different order parameters and expansions in
the replica calculation, the representation remains a standard one [VB85, WS88]. Working at
the saddlepoint we are able to substitute saddle-point definitions for π̂ , ˆ̄qα and q̂〈α1α2〉 to obtain
an equation in only π(σ), q̄α and q〈α1α2〉. We then reparameterize π , the generating function
of the order parameters, by the complete expansion

π(σ) = 1 +
∑

α

qασα +
∑

〈α1α2〉
q〈α1α2〉σ

α1σα2 +
n∑

l=3

q〈α1...αl〉σ
α1 . . . σ αl , (11)

The components q〈〉 as well as q̄α represent spin–spin correlation order parameters between
replica [Nis01]. In the case b̄ = 1 the distinction between qα and q̄α is artificial, as emerges
from the calculation. We can rewrite the exponent at the saddlepoint as


 = − log

〈∑
σ

exp{X }
〉

b

+
βJ0

2

∑
α

(q̄α)2 +
β2J̃ + ρT2

2

∑
〈α1α2〉

(
q〈α1α2〉

)2

+
ρT1

2

∑
α

(qα)2 +
∑
l=3

ρTl

2

∑
〈α1...αl〉

(
qα1...αl

)2
.

X =
∑

α

β(b(J0q̄α + hD) + ρT1qα + hS)σα + β2
∑

〈α1α2〉

(
(J̃ + ρT2)q〈α1α2〉 + χ2

)
σα1σα2

+ ρ
∑
l=3

Tl

∑
〈α1...αl〉

qα1...αl
σ α1 . . . σ αl . (12)

up to addition of constants. The quantities Ti are to leading order in n

Ti =
∫

dφ(x) tanhi (βx) (13)

with φ being the coupling distribution. The new order parameters must satisfy the set of
coupled saddle-point equations

q〈α1...αp〉 =
〈
N

∑
σ

{σα1 . . . σ αp } expX
〉

b

, (14)

with (8) still applying. Non-zero order solutions of many types may exist but solutions are
non-trivial except at high temperature and zero external fields. In the next section we examine
solutions for vanishing external fields hS = hD = χ = 0 emergent in the high temperature
regime.

5
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4. High temperature solutions at zero external field

In the case of zero external fields there exist phases classified by the set of non-zero order
parameters. For the low β regime the unique stable solution to these equations is the
paramagnetic one (P), with all order parameters zero (14). It is possible to determine
a hierarchy of critical temperatures [VB85] for the emergence of different types of non-
paramagnetic order solution by writing the saddle-point equations (14) in cases with all but
one type of order parameter types zero. A single spin (ferromagnetic, F) order emerges subject
to a non-zero solution of(

q̄α

qα

)
=

(
tanh(βJ0q̄α) + b̄ tanh(ρT1qα)

b̄ tanh(βJ0q̄α) + tanh(ρT1qα)

)
. (15)

A spin-glass (SG) order requires a non-zero solution to

q〈α1α2〉 = tanh
(
(β2J̃ + ρT2)q〈α1α2〉

)
. (16)

Due to the convexity of the tanh function the criteria is described equivalently by a linear
expansion

[λS = β2J̃ + ρT2] > 1. (17)

Higher order solutions, indicated by q〈α1...αp〉 emerge subject to the criteria ρTp > 1, by
a similar linearization to (17). However, no solution of this type can emerge at higher
temperature than that indicated by equation (17) as the following inequality holds for arbitrary
coupling distribution φ [VB85]

(β2J̃ + ρT2) � λ(p), (18)

defining λ(p) = ρTp for p > 2, the inequality becomes strict in the case J̃ > 0.
One can apply similar arguments in convexity to aid solution finding in the second case

(15), we will restrict attention to the cases b̄ = 1 and b̄ = 0. In the first case the right-hand-
side of (15) is identical in the two components so that the order emerges uniquely along the
direction tα ∝ qα = q̄α . The criteria for a non-zero solution is[

λF
+ = βJ0 + ρT1

]
> 1. (19)

For the case b̄ = 0 the situation is also relatively simple, by the convexity properties of the tanh
it is sufficient to linearize (16) in q̄α, qα . The independent processes can then yield solutions
depending on one of two eigenvalues meeting the criteria[

λF
± = 1

2

(
βJ0 + ρT1 ±

√
(βJ0 − ρT1)2 + 4b̄βJ0ρT1

)]
> 1, (20)

written to be inclusive of both cases b̄ = 0 and b̄ = 1 (19). Except in the case of a critical
temperature with ρT1 = βJ0 = 1 the largest eigenvalue λF = λF

+ will determine the type
of the emergent one-spin order. We use the generalized order parameter tα ∝ v1q̄α + v2qα

to correspond to the mode λF
+ , v depending on the type of ferromagnetic order. We assume

throughout the paper that the discrete symmetry in solutions ±tα is broken by a small external
field (hS or hD) aligned with the positive solution. When λF

+ ≈ λF
− one must consider both

qα and q̄α becoming non-zero simultaneously, the consequences of generalizing the following
sections’ analysis to include this case are considered in appendix B.1.

Equations (17), (18) and (20) indicate that for any mixed system (J̃ or J0 �= 0) there
is a transition at some temperature towards a ferromagnetic or SG phase. The effect of ρ,
which indicates a percolation in the sparse couplings only if ρ > 1, generates no obvious
criticality in the expressions, except in cases where J0 � 0 (J̃ = 0) then ρ must exceed 1
for the possibility of a ferromagnetic (SG) high temperature transition, regardless of bond

6
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strength or distribution in the sparse part. In this scenario of negative mean coupling in the
dense subsystem, λF

+ (20) is a convex, not monotonically increasing, function of β. This
means for example that by continuous variation of several ensemble parameters one is able to
create a first order paramagnetic–ferromagnetic (sparsely aligned) transition, with the upper
critical temperature changing discontinuously in γ . Details may depend on the sparse coupling
distribution φ.

There exist a number of alternative rigorous methods to attain such a set of paramagnetic
high-temperature transition points without the use of replicas. In particular we note the results
[Ost06], which allow the high-temperature transitions to be found by transformation of a
disordered Ising spin model to a uniform interaction Ising model for many topologies, thereby
allows easy identification of transition points.

4.1. High temperature auxiliary system

We generate a system to describe the non-paramagnetic phase in the vicinity of the high
temperature transition with either or both 1 = λF

+ − 1 or 2 = λSG − 1 small and positive,
and with λ(p) < 1 and λF

− < 1 (there is only one potentially non-zero ferromagnetic alignment).
In this scenario we may describe the leading order behaviour to second order in  exactly by
an auxiliary saddle-point equation—which may be subject to exact analysis. This approach is
motivated by related methods for sparse SG [VB85, Mot87].

We first introduce some important definitions chosen to be compatible with [VB85]

r1 = 1

λF
+

− 1; r2 = 1

λS
− 1; ri>2 = 1

λ(i)
− 1;

tα = λF
+ (v1qα + v2q̄α) + β(v1h

S + v2h
D); Q(α1α2) = λSq〈α1α2〉 + β2χ2; (21)

Q(α1α2α3) = λ(3)q〈α1α2α3〉; Q(α1α2α3α4) = λ(4)q〈α1α2α3α4〉

Notation () is to indicate any permutation in the set of indices, the new order parameters
are identical for any ordering of indices. The notation () is dropped for abbreviation in the
parameters henceforth. The components of v = (v1, v2) describe the different possible
alignments of the ferromagnetic order at the high temperature boundary: (1, 1) for b̄ = 1 and
(1, 0)[(0, 1)] for b̄ = 0 with ρT1 < [>]βJ0, respectively.

At a certain temperature, the minimum β which satisfies either (17) or (20), a new phase
continuously emerges from the paramagnetic solution which is either ferromagnetic or SG,
respectively. A sufficient description of these solutions in the vicinity of this high temperature
boundary is given by an expansion in the restricted set of order parameters: ferromagnetic
tα and SG Qα1α2 under some ansatz. The rescaling of order parameters (21) is to abbreviate
the expressions, and we consider the case of negligeable external fields in examining the
transitions. For λX < 1 the saddle-point solution for the Xth order parameter is zero unless
there is a non-zero component in the higher order parameters, we say the order is induced.
For example a non-zero tα induces order in Qα1α2 ,Qα1α2α3 when λS, λ(3) < 1, and Qα1α2

induces order in Qα1α2α3α4 when λ(4) < 1. We include order parameters upto 4 th order,
this set is sufficient to describe the leading order behaviours of the phases. These inclusions
discriminate the approach from a simple mean-field (fully connected) approximation to the
correlation structure of the sparse subsystem.

Calculations of the significant higher order parameters through the saddle-point
equations (14) and of Tr 〈expX 〉 are undertaken in appendix B. The auxiliary expression
for 
 (6) can then be found by expansion in tα,Qα1α2 ,Qα1α2α3 ,Qα1α2α3α4 to significant order
as

7
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 = 1

2

∑
α

(
(tα − βh)2

/
λF

+ − (tα)2
)

+
1

4

∑((
Qα1α2 − β2χ2

)2/
λS − (

Qα1α2

)2)
+

r3

12

∑
Q2

α1α2α3

+
r4

48
Q2

α1α2α3α4
+

1

12

∑
tα

4 +
1

2!12

∑
Q4

α1α2
− 1

45

∑
tα

6

− 1

2!

∑
tα1 tα2Qα1α2 +

2

2!3

∑
t3
α1

tα2Qα1α2

+
1

2!3

∑
tα1 tα2Q

3
α1α2

− 3

3!

∑
tα1 tα2Qα2α3Qα1α3

− 1

3!

∑
Qα1α2Qα2α3Qα1α3 − 12

4!

∑
tα1 tα2Qα1α3Qα2α4Qα3α4

− 3

4!

∑
Qα1α2Qα1α3Qα2α4Qα3α4 − 3v2

3!

∑
tα1Qα2α3Qα1α2α3

− v2

3!

∑
tα1 tα2 tα3Qα1α2α3 − 3

4!

∑
Qα1α2α3α4Qα1α2Qα3α4 , (22)

where summations are over the unordered distinct indices. The difference in this expression
from a simple combination of two fully or sparsely connected systems is in the temperature
dependence of terms 1,2 and in the entropic terms of coefficient v2—the sparsely induced
ferromagnetic/mixed solutions differs at second order.

The simplest solution to this equation, consistent with a non-zero solution and the
n → 0 limit, is a replica the symmetric one plus fluctuations: taking tα = t + Sα,Qα1α2 =
Q + Rα1α2 ,Qα1α2α3 = Q3 + δQα1α2α3 and Qα1α2α3α4 = Q4 + δQα1α2α3α4 . These fluctuations
should be considered independent upto permutations on the set of indices. We may now
rewrite the auxiliary free energy (22) in terms of the RS solution and fluctuations as


 = 
(t,Q,Q3,Q4) + W
∑

Sα + Z
∑

Rα1α2 + Z3

∑
δQα1α2α3

+Z4

∑
δQα1α2α3α4 + A

∑
(Sα)2 + B

∑
SαSβ + 2C

∑
RαβSα

+D
∑

RαβSγ +
P
2

∑
R2

αβ + Q
∑

RαβRαγ +
R
4

∑
RαβRγδ

+
∑

δQαβγ (XδQαβγ + YRαβ + ZSα) +
∑

δQαβγ δ(X4δQαβγ δ + Y4Rαβ).

(23)

The prefactors are chosen to make connection with a standard stability analysis result which
we use in the following section [dAT78]. For the RS solution to be a saddle-point solution the
terms linear in the fluctuations must vanish so that:

W = 0 = −βh

λF
+

+ t

(
r1 + Q +

1

3
t2 − 2Q2 − 2

15
t4 − 4

3
Qt2 +

17

3
Q3 − v2

Q3

t
(t2 + Q)

)
(24)

Z=0= −β2χ2

2λS
+

1

2
r2Q + Q2 − 1

2
t2 + 2Qt2 − 17

6
Q3 +

1

3
t4 − 17

2
Q2t2 + v2Q3t − 3

2
Q4Q, (25)

Z3 = 0 = v2

r3
(v2t

3 + 3Q), Z4 = 0 = 3Q

r4
(26)

These allow paramagnetic (t = Q = 0), ferromagnetic (t �= 0,Q �= 0) and SG (t = 0,Q �= 0)

solutions.
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4.2. Stability near the high temperature transition

The RS solution has t and Q such that the exponent is a local extremum. The saddlepoint is a
stable local maxima if the quadratic form, which may be described by a real symmetric Hessian,
is positive definite. This is difficult to calculate in the general case with non-zero fluctuations
in all the order parameters. Instead we wish to consider a restricted set of fluctuations with
δQα1α2α3 = δQα1α2α3α4 = 0, thus we are testing coupled instabilities with respect to marginal
magnetizations and spin–spin correlations only. This restricts somewhat the set of possible
perturbations but provides a concise approximation to the stability properties, including the
replica symmetry breaking (RSB) ansatz, we expect to generalize very well to inclusion of
more complicated multispin instabilities.

We can in the restricted case calculate the eigenvalues of the quadratic form which are
degenerate and only of three types in the limit n → 0 [dAT78]. The stabilities depend on a
combination of coefficients given by

A′ = A − B = r1

2
+

1

2
Q +

1

2
t2 − Q2 − 1

3
t4 +

17

6
Q3 +

v2

r3

(
3

2
Qt2 +

v2

2
t4

)
(27)

C′ = C − D = t

(
−1

2
− 17

2
Q2 + 2Q +

2

3
Qt2 +

v2

2r3
(3Q + v2t

2)

)
(28)

P = r2

2
+ t2 +

1

2
Q2 (29)

Q = −Q

2
− t2

2
+

3

2
Q2 + 3Qt2 (30)

R = −
(

3

2r4
+ 1

)
Q2 − 2t2Q, (31)

where we have substituted the definitions (26) for the higher order parameters. These combine
to give the longitudinal instabilities

λ± = 1
2

(
A′ + P − 4Q + 3R ±

√
(A′ − P + 4Q − 3R)2 − 8(C′)2

)
, (32)

and the replicon instability

λ1 = P − 2Q + R. (33)

By an expansion of the coefficients, in terms of 2 = λS − 1 near the SG boundary and
1 = λF

+ − 1 in the vicinity of a ferromagnetic boundary, it is possible to determine leading
order RS solutions and their stability properties. We consider the two cases that one component
is small and the other large, and the case of a fine balance between the two (1 = O(2)).
Results should be interpreted with reference to figure 1.

4.3. Solutions below the high temperature transitions

4.3.1. Paramagnetic (P) solution. The P solution (t = 0,Q = 0) is unstable everywhere
below the high-temperature transition point and stable everywhere above it; eigenvalues being
proportional to −1 and −2.

4.3.2. Ferromagnetic (F) solution. In the regime where 2 
 0 and 1 > 0, only the F and
P solutions exist, one finds the F solution to leading order has r2Q = t2 = 3r21/(3 + r2).

9
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∆1 ∆1 ∆1
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(c)(b)(a)

1/β

F

λ =1(4)
λ =1(3)

λ =1λ =1F
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F

γγ

Fλ =1
λ =1
(4)

(3)

λ =0(4) 1

Figure 1. A qualitative description of RS solutions and their instabilities, the auxiliary results being
valid in the vicinity of the high-temperature transition line. Dot-dashed lines indicate emergence of
high-temperature phase transition. The darker (upper) lines indicate the relevant high temperature
solution from this set. Left – the high temperature transition can be of ferromagnetic or SG type. If
the types of order in the sparse and dense part are not complementary there can exist a triple-point
(γC). Below the triple-point the type of order will in most cases be that induced by the dense
subsystem. The additional dot-dashed line descending from the triple-point corresponds to the RS
F-SG transition line (36), the RS ferromagnet being the stable solution between this line and the
corresponding ferromagnetic high-temperature transition. The triplepoint analysis is valid where
λ(p) < 1. One can reverse the labelling F,SG and corresponding  symbols in the diagram, with
the qualitative nature of the diagram being similar. Centre – in cases where the dense distribution
has negative mean coupling the ferromagnetic solution to (20) may disappear discontinuously, so
that the high temperature transition is a discontinuous one, the triple-point analysis applies to no
part of the diagram. Right – in the case of competing alignments of ferromagnetic order then
there will exist competition between these alignments; again at a triple-point, the solution below
this point can have (qα, q̄α) non-zero in a combination determined by (15), the free-energy is
symmetric about a dotted line βJ0 = ρT1 at leading order in . This is a vertical line in the β − γ

plane at leading order.

The longitudinal (λ+), and replicon eigenvalues are proportional to r2, which is positive in
this regime. The other longitudinal eigenvalue is proportional to 1, which is positive and
coincident with the high temperature boundary.

4.3.3. Spin glass (SG) solution. In the regime where 1 
 0 and 2 > 0 only the SG and P
solutions exist. The paramagnetic solution is unstable in a longitudinal mode corresponding
to the high temperature boundary. One finds the SG solution gives Q = 2/2, t = 0 to
leading order. The longitudinal eigenvalue λ+ is coincident with r1, which is positive. The
other longitudinal eigenvalue is proportional to 2, which is positive. The replicon instability
is given to leading order as

λ1 = 2
2

(
−3

8
− 1

6r4
+

9

8r2
4

)
, (34)

which may be negative or positive depending on the value r4. The expected replica symmetry
breaking instability is attained when J̃ and ρ is large, but where ρ is near the percolation
threshold and with J̃ small the spin glass can be stable. Since our analysis includes the VB
model as a special case, which is proven to be unstable in the RS spin glass solution [Mot87],   
this result must indicate some pathology in the stability analysis—the failure to consider
higher order fluctuations. Nevertheless our results may be indicative of a general weakening
of instabilities as the sparse coupling limit is approached.

4.3.4. Co-emergence regime λS ≈ λF . In this case we make an expansion with both 1

and 2 small, and consider both the SG and F solution. The SG solution and eigenvalues are
unchanged at leading order except in

λ− = 1

8

(
3µ − 2 −

√
4 + 4µ + µ2

)
+ 2

1

(
9

4r2
4

+
5

12r4
− 1

2
+ O(2 − µ)

)
(35)
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where 2 = µ1. This coefficient is negative provided 0 < µ < 2, so a longitudinal
instability emerges when

[c = 1 − 2/2] = 0. (36)

The ferromagnetic solution is changed in both the RS order parameters

t2 = 22
1 − 12; Q = 1 + 2

1

(
1 + µ

3
+

3v2

r3

)
(37)

at leading orders, and in eigenvalues

λ− = 1
2 − µ

2
+ 2

1

(
3v2

2r3

)
+ 2

1O(2 − µ) (38)

λ1 = 1
2 − µ

2
+ 2

1

(
−1

2
− 3

2r4
+

3v2

r3
+

4(µ − 2)

3
+

(µ − 2)2

2

)
(39)

The other eigenvalue remains coincidence with 1 for all µ (indicating stability). Thus at
leading order we have a transition from an RS ferromagnetic system to a longitudinally stable
SG when µ = 2 (36).

Consider first the situation in which at the triple point r3 is not sufficiently small in
comparison with r4 to make (39) positive, or that the alignment of the ferromagnetic moment is
in the dense part v2 = 0. The second order corrections to the eigenvalues for the ferromagnetic
regime indicate that in the vicinity of the transition the replicon mode (39) is more negative
than the non-negative valued longitudinal mode (38). We have a negative value for the replicon
instability, but positive value for the longitudinal stability on the critical line, so that at second
order we can predict the existence of a RSB unstable phase of non-zero magnetic moment (a
mixed phase, M) between the ferromagnetic and SG solutions in a region about the critical
line. This result is qualitatively similar to the Viana–Bray (sparse) model stability result for
variation of ρ [VB85]. If the replicon eigenvalue is positive on the critical line the mixed phase
may be shifted marginally about the critical line. Unfortunately, the term r3 is sufficiently
small to cause positivity in the second order term for many ensembles. A similar complicated
dependence of the longitudinal mode exists for the spin-glass solution (35)—the results in
combination suggest existence of some systems with longitudinally stable F-SG coexistence
regimes, rather than a mixed state, near the critical line. However, we suspect these details to
be artefacts of the restricted stability analysis.

4.4. Concluding remarks on high temperature solutions

The RS ferromagnetic solution is the unique stable RS solution where it exists, except near
the SG transition point (36). The SG RS solution is we suspect an unstable one in the replicon
mode, although the stability analysis indicates that at higher temperature there may be a region
in which it is an RS stable solution. The paramagnetic solution is unstable everywhere below
the high-temperature transition lines. The ferromagnetic phase becomes unstable to replica
symmetry breaking (in {tα,Qα1α2}) in the vicinity of the transition, generating a mixed phase.

It is of course essential to consider the line (36) represented in terms of some variation
of our parameters. This line may be calculated to leading order as a function of δγ and δβ,
which is undertaken in appendix C. In so doing we find the line is typically orientated towards
γ greater than γC as temperature is lowered, indicating a transition from ’dense’ to ’sparse’-
type order; a result which is applicable for either type of order (SG or F) in the dense part.
This result also implies, interestingly, that ergodicity breaking may disappear as temperature

11
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is lowered; a sufficient dense-coupling tendency towards ferromagnetism may allow such a
transition in the case of weakly-ordered sparse SG. One can consider higher order corrections
to the eigenvalues in the vicinity of the triple-point, and in so doing we expect that in most cases
a mixed solution will be found, that in some region of parameter space the RS ferromagnetic
solution will be unstable when second order corrections are included.

This analysis leaves open the corrections to the stability analysis due to higher order
parameters, and results at second order: (35), (39) and (35), motivate such a consideration.
A sensible way to probe higher order parameters might be to consider other restricted sets
of fluctuations, δQα1α2α3 a function of δtα and δQα1α2 for example. We have found that
complicated terms in r3, r4 appear also in these cases, but we anticipate increased instability if
fluctuations are allowed in all 4 order parameter types. It is likely such an analytic effort would
however be better directed to a more general 1RSB formulation solved by numerical methods.
The case of a degenerate transition

(
λF

− ≈ λF
+

)
by a comparable method is considered in

appendix B.1.

5. Low temperature results by RS assumption

5.1. Replica symmetric ansatz

The RS ansatz is here applied to the full free energy expression, the order parameters being
invariant with respect to relabelling of spins. Returning to our order parameter description in
terms of π(σ) we have the standard definitions

π(σ) =
∫

dW(h)
exp{βh

∑
α σα}

2 cosh(βh)
; q̄α = q̄1; q〈α1α2〉 = q2 (40)

so that W(h) is now a normalized distribution on the real line describing the moments of π(σ),
which must be determined. The self consistent equations may then be reexpressed in terms of
the set of parameters W, q̄1, q2 at the saddlepoint

W(h) ∝
〈

L∏
i=1

[∫
dW(hi) dφ(xi)

]
δ(h − H)

〉
b,L,λ1,λ2

(41)

q̄1 ∝
∫

dh tanh(βh)

〈
b

L∏
i=1

[∫
dW(hi) dφ(xi)

]
δ(h − H)

〉
b,L,λ1,λ2

(42)

q2 ∝
∫

dh tanh2(βh)

〈
b

L∏
i=1

[∫
dW(hi) dφ(xi)

]
δ(h − H)

〉
b,L,λ1,λ2

(43)

H = bJ0q̄1 + bhD + hS + λ1

√
J̃ q2 + λ2χ +

1

β

L∑
i=1

atanh(tanh(βxi) tanh(βhi)) (44)

The average in b is with respect to b̄, λ-averages are over Gaussian distributions of zero mean
and unit variance, and L-average is over a Poissonian probability distribution of parameter ρ.
For b̄ = 0 one may reduce the expression (42) to a simple one, as a moment of the distribution
W(h).

This equation may be solved by the standard method of population dynamics [GBM01],
the distribution W(h) is represented at time t by a histogram of N fields {hi}, alongside the scalar
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order parameters q̄
(t)
1 and q

(t)
2 . During any update step a single field (i) is randomly selected

and updated according to a sample from the quenched parameters {L, b, x , h , λ1, λ2}:

h
(t+1)
i = b(t+1)J0q̄1 + b(t+1)hD + hS + λ

(t)
1

√
J̃ q2 + λ

(t)
2 χ

+
1

β

L∑
j=1

atanh
(

tanh
(
βxt

ij

)
tanh

(
βht

ij

))
(45)

h
(t+1)
j �=i = h

(t)
j �=i : b

(t+1)
j �=i = b

(t)
j �=i , (46)

all other fields being left invariant. Following this we must update the other order parameters,
the field h

(t)
i is removed and the new field h

(t+1)
i is added to obtain

q̄
(t+1)
1 = q̄

(t)
1 + b(t+1) tanh

(
βh

(t+1)
i

) − b(t) tanh
(
βh

(t)
i

)
q

(t+1)
2 = q

(t+1)
2 + tanh2 (βh

(t+1)
i

) − tanh2 (βh
(t)
i

)
.

(47)

Note that in the case that b̄ �= 1 it is necessary to associate with each field in the histogram the
sampled disorder b(t) in the relevant field update step, in order that q̄

(t+1)
1 may be incrementally

updated.
Convergence through this procedure to the correct solution, to within numerical accuracy

dependent on N, is fairly robust. In order to avoid systematic errors, and attain convergence in
a suitable time scale we must carefully choose initial conditions and population size, decide
upon convergence criteria, and a sufficient level of sampling, as discussed in appendix D.

The non-variational free energy β 〈f 〉, coincident with 
 after the appropriate limits have
been taken, may be written as

∂

∂n



.= −ρ

2
〈log cosh βx〉 +

ρ

2
〈log(1 + tanh βx tanh βh1 tanh βh2)〉 − 〈log 2 cosh(βh)〉

+ ρ 〈log cosh atanh(tanh(βh) tanh(βx))〉
+

1

2
βJ0q̄

2
1 − 1

4
β2J̃ (1 − q2)

2 − 1

2
β2χ2. (48)

With appropriate scaling of the coupling distribution φ and γ with N it is possible to show
equivalence of the sparse part with the dense part at large connectivity ρ.

Other quantities of interest are

〈Sα1 . . . Sαk 〉 =
∫

dW(h) tanh(βh), (49)

where W(h), the auxiliary field distribution, is identical to the local field distribution. A
sufficient statistic to describe the field distribution along the dense alignment is q̄1 combined
with q2 in the case b̄ = 0. The order parameter q̄1 is related to the correlation of spins,
precisely as the mean spin along the alignment,

q̄1 =
〈

1

N

∑
i

biσi

〉
; (50)

this definition is achieved by the derivative of the variational free energy with respect to hD .
Similarly, the variance in the external fields, χ2, is conjugate to the parameter q2 in the replica
formalism, and hS to the mean alignment along sparse ferromagnetic orientation. q2 (which
may also be determined from the local field distribution (49)) is the SG order parameter, q̄1

and q1 represent ferromagnetic type order parameters. More generally it is possible to show
that the local field distribution amongst replica spins (49) is analogous to the field distribution
for real spins in a typical sample from the ensemble I.
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The entropy is an additional physical quantity of interest—it is known that this can
become negative at low temperatures in cases where the RS ansatz is insufficient and provides
an indication for an over-simplistic assumption. The energy may be determined simply from
the free energy as

e = −ρ/2
∫

dφ(x)x tanh βx − J0q̄
2
1

/
2 − β

(
J̃ q2

2 − 1
)/

2 − hDq̄1 − hS

∫
dW(h) tanh(βh)

− ρ/2
∫

dW(h1) dW(h2) dφ(x)x
(1 − tanh2(βx)) tanh(βh1) tanh(βh2)

1 + tanh(βx) tanh(βh1) tanh(βh2)
− βχ(q2 − 1)

(51)

and the entropy calculated by the Helmholtz relation

s = β(e − 〈f 〉). (52)

It is possible to see that these thermodynamic extensive quantities (52), (51) and (48) differ
from the summation of two independent VB and SK subsystems only in the saddle-point value
of W(h).

5.2. Longitudinal stability analysis

Recent work has shown that it is also possible to test the so called longitudinal instabilities
within the framework of population dynamics. Consider that a solution to the equations (42),
(43) and (41) can be found, one can then examine whether the trajectories of fields in the
population {hi} are stable against small perturbations. An unstable trajectory is indicative
of ergodicity breaking and may be characterized by divergences in certain properties. It has
been shown by Kabashima in [Kab03] that the method we shall outline directly tests the
longitudinal stability eigenvalue in the AT formalism [dAT78] for the simpler case restricted
to dense couplings. In a sparse coupled system Rivoire et al [RBMM04] related the divergence
in the mean square fluctuation to the determination of SG susceptibility through the fluctuation
dissipation relation.

A more general way to test local instabilities in the sparse case is to consider a less restricted
ansatz (1-step of replica symmetry breaking (1-RSB) [MPV87]) on the order parameters, and
determine if the state found is identical to the simpler ansatz. To our knowledge there is no
formalism sufficient to test all longitudinal stabilities for general topologies. We would expect
our system to conform to the hierarchy of replica-symmetry broken ansatze, but possibly not
be 1-RSB anywhere. We do not attempt to extend the current analysis to the 1-RSB formalism
due to the computational difficulties, especially at low temperatures; moreover, we find the
RS-based analysis to provide a good description in much of the phase space, and trust it to
be indicative of trends even in the replica-symmetry broken phases for the simple statistics
studied.

Instability within the population dynamics solution arises out of the microscopic processes
occurring in the update equations. In order to correctly define the consequences of microscopic
variation it is necessary to reformulate the dense part of the field update (45) and represent
this by the microscopic processes of iteration of a full set of fields on a tree (Bethe Lattice),
alongside the sparse process. This is equivalent to a reformulation of the problem as belief
propagation [Kab03], and testing the convergence of the dynamics to a unique solution.

It is necessary to represent the dense interactions in the saddle-point equation (47) by a
similar structure to the sparse interactions, as a summation over many spin–spin interactions
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rather than their statistical average. Here, the saddle point equations of (47) take a microscopic
form

bβq̄1 + λ
(t)
1 q2 → 1

β

∑
j

b
(t+1)
j atanh

(
tanh

(
βx̄

(t)
j

)
tanh h

(t)
j

)
, (53)

where x̄
(t)
j are now random samples from the dense coupling distribution (which may be taken

as a Gaussian N (J0/N, J̃ /N)), and b
(t+1)
i is the orientation of the spin on the target site, j

runs over all fields excluding those involved in the sparse subsystem. We will now calculate
how a small variation in the incoming fields acts to perturb the outgoing field in a particular
update.

h
(t+1)
i + δh(t+1) =

∑
j\{i,i1...iL}

b
(t+1)
i

β
atanh

(
tanh

(
βx̄

(t)
j

)
tanh

(
h

(t)
j + δh

(t)
j

))

+
1

β

L∑
j=1

atanh
(

tanh
(
βx

(t)
ij

)
tanh

(
h

(t)
ij

+ δh
(t)
ij

))
(54)

Where L, the set of fields {ij }, the sparse and dense couplings and the target disorder are
random samples in any update. Assuming the perturbations δh to be small and knowing the
couplings x̄ we can make a Taylor expansion to linear order obtaining

δh(t+1) = b
(t+1)
i

∑
j\{i,i1...iL}

(1 − tanh βhi)x̄
(t)
j δh

(t)
j +

L∑
j=1

(
1 − tanh2

(
h

(t)
ij

))
tanh

(
βx

(t)
ij

)
1 − tanh

(
βx

(t)
j

)
tanh

(
h

(t)
ij

) δh
(t)
ij

,

(55)

with the indices again referring to the same quenched samples. Using the fact that the first
part is a sum of N − L(t) ≈ N random variables we can simplify the description of this term
by the central limit theorem, describing the processes by a normal distribution of mean and
variance

βJ0〈(1 − tanh βhi)δhi〉/N; β2J̃ 〈(1 − tanh βhi)
2δhi〉/N, (56)

respectively.
We are interested in two types of quantities for any solution

χ1 = log

(∑(
δh

(t+1)
i

)
∑(

δh
(t)
i

)
)2

; χ2 = log

(∑(
δh

(t+1)
i

)2

∑(
δh

(t)
i

)2

)
(57)

which characterize linear and non-linear (SG) susceptibilities by analogy with results for
sparse [RBMM04] and dense [Kab03] systems. We expect a negative value in χ1 to indicate
local linear stability, while a negative value in χ2 indicates local non-linear stability. We
expect the non-linear stability to be sufficient to detect ergodicity breaking trends in solutions.

In the case of a paramagnetic solution results may be determined exactly, the linear
instability in δh is found to correspond to the ferromagnetic solution criteria (20). The non-
linear susceptibility is found to coincide with the SG solution criteria (17). Therefore the
paramagnetic solution instabilities determined in section 4.2 are reproduced exactly by this
method.

Generally we note that by the nature of the population dynamics algorithm there exist a
number of noisy effects: (i) numerical finite precision errors; (ii) the noise arising from the
random order in which fields are updated; (iii) the systematic effect of updating first the field
h

(t)
i , then q̄

(t)
1 and q

(t)
2 ; (iv) the finite precision in the histogram; and most importantly (v)
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the random sampling of quenched parameters in each field update. We can therefore expect
convergence of our dynamics to limit not only the final precision achieved, but also the set of
solutions, to those stable against such perturbations. We assume this class of perturbations
to be sufficient to probe the linear stability even in the low temperature regime. Any linear
instability should be observable in some moment of the histogram

{
h

(t)
i

}
so provided we test

convergence in W effectively we hope to rule out linear instabilities.
For the other phases the instabilities depend on the details of the field distribution.

Consider that we have arrived at some fixed point described by
{
h

(t)
i

}
. We can test the

stability of this point by adding small perturbations
{(

δh
(t)
i

)2}
and determining χ2 once

the dominate modes emerge. Details of the stability analysis implementation are given in
appendix D.

6. Numerical results of population dynamics

We employed population dynamics to investigate a number of systems concentrating on those
in which we could examine the effects of competing order as both a weak effect (near the high
temperature boundary) and a strong effect at lower temperatures. Many critical quantities
could not be sufficiently resolved at high temperature primarily for reasons of finite precision,
and near the percolation threshold, in our algorithms we present cases with (β/βc < 10) and
ρ = 2, 1/βc being the largest critical temperature (typically 1 for examples chosen).

6.1. Data format

All data is based on linear spline interpolation of array data. In the figures over the range
γ = (0, 1) we use a point spacing of (δβ, δγ ) = (0.025, 0.025). For these diagrams we
present results based on a single run from random initial conditions, and plot the mean and
error bars (linear spline interpolation based on values at each sample point) over 20 samples
of data. These 20 samples are selected in successive time steps (a time step is N single
field updates, 1 for each field), following the convergence of the distribution. Therefore, the
error bars are not over independent samples, and as such not necessarily well described by an
uncorrelated Gaussian distribution, but this assumption gives a first approximation to single
time-step fluctuations in the measured state. Each point that did not converge within 500 time
steps is marked by a cross.

Figures that focus on part of the γ range use point spacing of (0.005, 0.005). We average
quantities in these figures over 10 runs based on different seeds for the random number
generator (different initial conditions and updates). The data point is taken to be the mean of
20 samples from each run. Unlike the sampling within a single run (which may be correlated in
successive update steps) we can be confident of the independence of these samples conditional
on the parameterization and convergence criteria, and present the mean and error bars for
quantities of interest (again interpolation).

Population dynamics is not required in the paramagnetic region, for which simple
boundary conditions based on exact knowledge are imposed, this creates some unevenness
in certain quantities very close to the boundary. A second source of unevenness is the array
like nature of the data points. Finally our convergence criteria appears not strict enough to
prevent some systematic errors (drift) near critical regions, otherwise we expect error bars to
be representative.

Cases of incomplete convergence are treated for purposes of data collection and
interpolation as converged results. Incomplete convergence occurs: (i) in a small number
of cases close to critical transitions, (ii) in the case of competing ferromagnetic alignment.
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Figure 2. A dense subsystem (J0 = 1, J̃ = 0) with a sparse subsystem (p = 0.5, J = 1
2 )—dense

ferromagnetic and sparse SG couplings. A schematic denotes our qualitative understanding of the
solutions. Main figure: the exact critical lines ((17), (18) and (20)) are indicated by dot dashed lines
with the darker (upper) line being the exact high temperature transition. The thick line χ2 = 0, and
the line of zero magnetization q1 = 0, indicate transition points as determined by the population
dynamics algorithm. The continuation of q1 = 0 must be inferred by the contours in q1 (thin lines).
Error bars in all contour lines are plotted and indicate time-step fluctuations within a single run.
Transitions are between unstable-stable and SG-F solutions, the unstable ferromagnetic solution is
classified a mixed state. It appears the effect of sparse frustrating bonds is to make the RS-dense
ferromagnet unstable as β increases. Similarly the sparsely induced SG may be susceptible to a
transition towards a mixed state with increasing β. The mixed phase remains close to γ = γc ,
thus the competition of interaction types remains in some sense balanced as temperature decreases.
Inset figure: the right figure shows the same contours as the main figure in magnification with
corresponding error bars (variation between different independent minimizations). We also plot
the high-temperature critical line (36), which indicates the exact gradient for the curves χ2 = 0 and
q2

1 = 0, this appears not to be closely followed by the line χ2 which is due to finite size numerical
errors and coarseness of point sampling.

After the maximum number of population iterations is completed (500) we select the histogram
(amongst 4 differing in initial conditions) of minimum free energy which is good in case (ii),
but does not resolve case (i). However, we found experimentally that in case (i) many quantities
did not vary greatly in absolute terms between the histograms of different initial conditions,
except for some systematic drift in the stability parameter χ2.

6.2. Figures presented and coupling distributions considered

As there is a large number of composite systems that could be considered and analysed, it
would be useful to review the choice of the specific cases presented here.

We present data for the several aligned (b̄ = 1) combinations of sparse and dense
subsystems. A mixture of a dense subsystem of ferromagnetic couplings with a sparse
SG (figure 2) or anti-ferromagnetic (figure 4) couplings; and the converse, a subsystem
of sparse ferromagnetic couplings mixed with a dense subsystem of SG (figure 3) or anti-
ferromagnetic (figures 5 and 6) couplings. We also consider the case of two subsystems both
with ferromagnetic couplings but unaligned (b̄ = 0, figures 7 and 8).

The dense couplings are parameterized by (J0, J̃ ), so that for example a dense anti-
ferromagnetic system is (−1, 0) in this notation. The sparse system we choose is the ±J
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Figure 3. A dense subsystem (J0 = 0, J̃ = 1) with a sparse subsystem (p = 1, J = 1
2 ),

i.e., dense SG and sparse uniform ferromagnetic couplings. A schematic denotes our qualitative
understanding of the solutions. Main figure: lines and symbols are the same as for figure 2, in
addition the thick dotted line represents a lower temperature bound to positive entropy (include the
negligible time-step errors), below this line the method is inconsistent as would be suggested by our
results on instability of the SG phase (to which this curve belongs). Inset: the low magnetization
contours, and stability parameter follow quite closely the triple-point analysis prediction (36) in
the vicinity of the boundary (inset). These lines break indicating a mixed phase. It appears there
may be no transitions in the SG state towards, a mixed phase. The mixed phase is shifted to higher
γ with increasing β indicating the greater relative importance of the dense disordered couplings in
determining phase behaviour as temperature is lowered. The ferromagnetic state is first unstable
to a mixed state, which may in turn be unstable towards a SG state.

model, a canonical case convenient for numerical reasons. In this model φ is bimodal and
described by p the probability of sampling +J as opposed to −J for each bond. Therefore
the sparse part is parameterized by (p, J ) with ρ = 2, describing the relevant subsystems we
present.

Owing to the large variety of parameterizations we are not able to test sufficient systems
to be able to make so general statements as are possible in the exact analysis of the high
temperature behaviour. However, we believe these systems to be the most intuitive of
combinations. We examined the effect of changing the distribution of sparse couplings φ

from ±J to Gaussian but found only marginal variations.

6.3. Stability results

Results are generally characterized by a dominance of the dense system below a critical mixing
parameter γc which is replaced by a dominance of the sparse system at larger gamma, although
the critical value and the specific properties depend on the system studied and the temperature
value.

We find that everywhere close to the boundary the longitudinal stability eigenvalue is
positive, thus the RS solutions appear to be locally stable, including in the SG phase. The
small gap observed for the SG solution between the numerical results obtained from population
dynamics and the high-temperature transition line is we suspect due to finite size effects in
a combination of population size and number of updates. Otherwise the SG solutions are
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Figure 4. The combination of dense subsystem (J0 = 1, J̃ = 0) and sparse subsystem
(p = 0, J = 1

2 ) is a combination of ferromagnetic and antiferromagnetic (SG) effects; lines
and symbols are as in the previous figures. Not surprisingly this case is almost identical to the case
of figure 2. There is excellent agreement between the thin data lines (ferromagnetic moments) and
the high temperature prediction for their disappearance (inset). A clear cusp exists in the stability,
indicating that an ergodic ferromagnetic behaviour may emerge in some systems as temperature
is lowered, this indicates increasing importance of the dense couplings as temperature is lowered.
However, instabilities do reemerge at lower temperature. The SG is susceptible to a mixed state as
temperature is lowered.
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Figure 5. The combination of dense subsystem (J0 = −1, J̃ = 0) and sparse subsystem
(p = 1, J = 1

2 ) is a combination of antiferromagnetic and ferromagnetic effects; lines and
symbols as in the previous figures. The dense couplings cannot independently induce SG or
ferromagnetic order, but do suppress ferromagnetic order. The resulting behaviour is comparable
to a SG ferromagnet combination– figure 3. By contrast to the dense SG coupling there is weaker
suppression of the magnetic moment at low temperature, and ergodicity breaking is a weaker effect
at low temperature in the ferromagnetic phase. In this diagram the high-temperature transition line
are marginally discontinuous as discussed (section 6.5). Therefore we do not provide a detailed
inset for the triple point analysis region.
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Figure 6. Anti-ferromagnetic couplings in the dense part aligned with ferromagnetic order in sparse
couplings can cause the high-temperature ferromagnetic solution criteria (19) to be unmet for any
β in some range of γ . If (20) describes the high temperature transition as γ decreases towards this
range then there is a discontinuity (a) and the stability analysis for the region 2 = 0(1) does
not apply, otherwise the transition is a continuous one (b) with the stability analysis applicable. (a)
With antiferromagnetic dense couplings (J0 = −2, J̃ = 0) and ferromagnetic sparse couplings
(p = 1, J = 1

2 ), the transition is discontinuous. The sparse order dominates the dense order
near γ ≈ γC , the relative importance of the dense couplings increases as temperature is lowered.
The closeness of the magnetization contours to the line λS = 1 may be a significant finite size
effect, these lines do not coincide in the thermodynamic limit. (b) With antiferromagnetic dense
couplings (J0 = − 1

4 , J̃ = 0) and ferromagnetic sparse couplings (p = 1, J = 1
2 ), the transition is

continuous. Results appear to follow closely the high temperature prediction. At lower temperature
γ ≈ γC appears to remain approximately coincident with a SG-M transition, the ferromagnet is
again unstable to a mixed phase in many systems.

unstable to ergodicity breaking as expected. The RS ferromagnetic solution may also become
unstable at sufficiently low temperatures. Therefore it appears that there is a mixed phase as
predicted by the stability analysis in which the magnetic moment is non-zero but ergodicity
breaking is present. Dense ferromagnetic phases appear less susceptible to this instability.

6.4. The co-emergence regime: properties on lowering temperature about a P–F–SG
triple-point, γ ≈ γC

We can examine the type of order observed as we decrease the temperature from the triple-
point, which provides information as to the relative importance of couplings in weakly ordered
systems. It appears that in the vicinity of the triple point one can lower the temperature and
find that the type of order present is closer to that induced by the dense couplings in most cases
(inline with the predictions of the high temperature analysis). The sparse type order parameter
in some cases completely disappears as temperature is lowered.

If the dense type order is ferromagnetic (figure 2) it appears that by lowering temperature
a region of ergodicity breaking may be encountered, but the magnetic moment does not
disappear; such a scenario describes a mixed phase. Conversely if one lowers the temperature
where the high temperature is a sparsely induced ferromagnetic one (figure 3), it is possible
not only for the ferromagnet to become unstable towards a mixed phase, but for the magnetic
moment also to disappear entirely. This characterizes a standard re-entrant behaviour, as
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Figure 7. A system with b̄ = 1, and uniform couplings of (J0 = 1, J̃ = 0) and (p = 1
2 , J = 1),

models the competition between two unaligned ferromagnetic orderings; lines and symbols as in
the previous figures. The converged solutions were found to be ergodic everywhere (χ2 < 0) and
were of positive entropy. In a part of the space below the cusp in the high temperature transition
(γc) population dynamics converge to one of two differently aligned locally stable states as can
be seen by the crosses. Varying γ through the centre of this region there is a rapid decline in q̄1
with the magnetic moment growing instead in q1. We speculate that this is a first order transition
between two locally stable states.

the magnetic moment re-enters the value it had in the paramagnetic phase. For the anti-
ferromagnetic SG state (figure 5) there are some indications of transitions from SG to mixed
as well as ferromagnetic to mixed transitions as temperature decreases.

A more exotic possibility observed in the simple combination of a dense ferromagnet and
sparse SG subsystems (figures 2 and 4) is that a SG phase may become an RS ferromagnet and
then further a mixed phase, as temperature is lowered. The numerical results are inconclusive
on this point, but one can combine this with knowledge of the exact transition-line result at the
boundary (36), and the intuition that ergodicity breaking is more likely at low temperatures
in frustrated systems. It is unusual to our knowledge for ergodicity breaking to disappear as
temperature is lowered, only for it then to reappear.

6.5. Discontinuous high temperature transitions

Figures 5 and 6 consider scenarios in which the high temperature transition is potentially
discontinuous. Where the boundary is discontinuous, the sparse coupling order is
ferromagnetic; it appears that the sparse-induced ferromagnetic order overwhelms any
emergence of SG order in the vicinity of the discontinuity (γ ≈ γC), so that the SG phase
must occupy only some very narrow region about the high temperature transition. We can
anticipate for both the SG and paramagnetic phases, that convergence of population dynamics
might be subject to especially strong finite size effects in the vicinity of this transition. We
vary the sparse ensemble through J to generate the different scenarios, ρ may also be varied
to create this effect.
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Figure 8. A system with b̄ = 1, and uniform couplings of (J0 = 1, J̃ = 0) and (p = 1
2 , J = 1),

models the competition between two unaligned ferromagnetic orderings. These figures show
magnifications of figure 7 near γc . Left figure: in the vicinity of γc a large number of states fail
to converge after maximum algorithm time of 500 steps (dots). We then have to chose which
of the 4 replica histograms evolved in the dynamics produces a result of smallest free energy.
If we evaluate the magnetization in this state we find a transition indicated by change of sign
in q̄1 − q1, this is plotted with error bars (time step fluctuations) for a single run. Left figure:
sampling 20 systems with a maximum time of 100 time steps in each iteration we show the contour
q̄1 − q1 = 0 with sampling errors for several different histograms evolved in parallel: a sparsely
aligned ferromagnetic (left most line), random SG or nearly paramagnetic (central thin lines) or
densely aligned ferromagnetic initial histogram. The central thicker black line is the equilibrium
result as determined by from the histogram of minimum free energy. With only 100 iterations
there is a slightly broader set of unconverged states (dots), but we already see the emergence of
two well defined dynamical transitions - left and right lines, matching approximately the result
in the left figure. The alignments of the random histograms appear to approximately match the
thermodynamical transition at high temperature but are noisy and slightly biased towards a dense
alignment at lower temperature.

With the transition nearly discontinuous (as is the case for J = 1/2 figure 5 in which
the discontinuity is visually imperceptible) one observes a similar behaviour to the case of a
SG-F combination (figure 2) except in the weaker suppression of the ferromagnetic order at
low temperatures. Clearly, in this case the antiferromagnetic dense component cannot induce
any order except for a paramagnetic one and the emergence of a SG is a property of the sparse
distribution.

In figure 6(a) where a discontinuity is clearly visible we find ergodicity breaking is
suppressed in the vicinity of the discontinuity. The ferromagnetic phase dominates near γc at
high temperature but gives way to a mixed phase at lower temperature. Figure 6(b) shows that
in the continuous case the high temperature prediction is qualitatively accurate. The SG state
appears to dominate near γc, with mixed phases appearing at lower temperature.

6.6. Unaligned ferromagnetic couplings b̄ = 0

This is an interesting case of competing ferromagnetic alignments; as one decreases the
temperature in the vicinity of γC it appears that, as a thermodynamic solution, the sparse
alignment is marginally dominated in the thermodynamic state by the dense alignment
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(figure 7). However, the sparse aligned solution persists at lower temperature as a metastable
state, responsible for the non-convergence, which is locally stable against ergodicity breaking
(χ2 < 0).

In fact, metastable states of both dense and sparse alignment exist across a wide range of
parameters γ for any β below the triple point (figure 8), indicated by populations converging to
different numerically stable solutions. These metastable states are characterized numerically
by q̄1 > 0, q1 ≈ 0 and q1 > 0, q̄1 ≈ 0 and we speculate the thermodynamic state involves a
first order transition between the two solutions. A necessary condition for the existence of a
metastable state is the non-negativity of both λF

± − 1, but this is not necessarily sufficient.
Histograms with a well defined alignment tend to converge to the locally stable state

with the same corresponding alignment, whether or not this is the thermodynamic solution.
Random initial conditions appear to converge towards the thermodynamic solution at high
temperature, but have a slight bias towards the dense alignment at lower temperatures (atleast
over a small number of updates). It is difficult to determine if the solution space generate a
larger basin of attraction for the dense metastable state, or one, in some sense, proportional
to the free energy. This may be important given that we envisage composite systems as
components in optimization problems were dynamical minimization by local search, similar
to population dynamics, is a critical feature, possibly more so than any static properties of the
ensemble.

7. Conclusion

This paper considers the question of systems consisting of a combination of sparse and dense
random couplings. Given the complementary properties of these types of structures, combined
with the possibility of a robust statistical description, many engineered systems may benefit
by a decomposition as laid out here. Such an example we are currently pursuing involves the
combination of sparse and dense spreading codes for multiuser access [RS07]. An alternative
application of this analysis might be in modelling random attacks on network structures, where
correlations between attacked elements are induced [HM].

This paper has considered a simple model in which canonical sparse and dense disordered
models have been mixed. In so doing we have observed some clear trends which may
generalize. These include the tendency for dense induced order to dominate sparse induced
order when in competition. In a system with a dense ferromagnetic tendency, it is possible for
this order to emerge from a sparse induced SG as a replica-symmetric stable system by lowering
the temperature, provided the order is sufficiently weak (high temperature). In the vicinity of
a high-temperature transition the effect of suppressing ferromagnetic order by an increasing
antiferromagnetic tendency in the bonds may have a very similar effect to the introduction
of frustrating effects in the interaction structure. Finally, the case of the unaligned system
indicates that the dominance of dense ferromagnetic over sparse ferromagnetic couplings is
marginal in equilibrium properties, however it appears a metastable behaviours may have
non-trivial consequences for dynamics.

Several questions remain open—importantly, the question of the low temperature limit
is not resolved in this paper nor is the behaviour in the vicinity of the percolation threshold.
These may be analysed by related statistical physics methods. There are a number of other
variations which would allow the insight gained from the current study to be strengthened,
including reformulations of the basic model so that the arbitrary parameter γ may be shown
to be only a technicality; so that related models, for example, in which a dense system is fixed
and one gradually adds more bonds (a variation of ρ), may be surmised. One can consider a
number of ways of scaling φ,J0 and J̃ with γ but we hope the properties we have reported
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here are robust against the most sensible alternatives such as scaling all coupling moments of
each subsystem uniformly with γ .

Finally, with the increasing interest in complex systems of varying connectivities and
interaction strengths, we believe the current study of a simple composite system comprising
elements which have both sparse (and strong) and dense (weak) interactions, represents a first
step in the principled analysis of their equilibrium behaviour.
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Appendix A. Replica calculation

A particular ensemble I is described by a set of order one scalars {J0, J̃ , ρ, hS, hD, χ2} and
a sparse coupling distribution φ of finite moments on the real line, without finite measure at
zero. These parameters contain an unstated dependence on the mixing parameter, we choose
this to be in the couplings φ,J0 and J̃ but leave this unstated for brevity. An instance of the
ensemble is constructed according to the following probability distributions, subscripts being
the relevant random variables

Pb(x) ∝
N∏

i=1

[δxi ,1(1 + b̄) + δxi ,−1(1 − b̄)];

PJD (x) =
∏
〈ij〉

φD(x〈ij〉);

PJ S (x) =
∏
〈ij〉

φ(x〈ij〉);

PA(x) =
∏
〈ij〉

[(
1 +

ρ

N

)
δx〈ij〉 +

ρ

N
δx〈ij〉,1

]
;

Ph(x) =
∏

i

φF (xi).

The dense coupling distribution φD may be taken as a Gaussian of mean J0/N and variance
J̃ /N . The field distribution for each site is a Gaussian of mean hDbi + hS and variance χ2.

We describe the properties of a particular ensemble through self averaged quantities
calculated from the mean free energy density (self averaging assumption) which with the
replica identity [MPV87] may be written

〈f 〉 = lim
N→∞

− 1

βN
lim
n→0

∂

∂n
〈Zn〉,

with β the inverse temperature. The replicated partition function, averaged over samples is
given by

〈Z〉 =
∑

S1...Sn

〈〈
exp

{∑
α

∑
〈ij〉

bibjJ
D
〈ij〉σ

α
i σ α

j

}〉
JD

〈
exp

{∑
α

∑
〈ij〉

A〈ij〉J S
〈ij〉σ

α
i σ α

j

}〉
A,J S

×
〈

exp

{∑
α

∑
i

hiσ
α
i

}〉
h

〉
b

.
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As is standard in such calculations [MPV87] we maintain only those terms in the exponent
which are order N, taking asymptotic values in n → 0 for brevity in all prefactors. The
quenched average on dense couplings may be factorized and taken by linearizing the exponent,
resulting in

〈· · ·〉JD =
∏
〈ij〉

exp

⎧⎨
⎩βJ0

N
b′

ib
′
j

∑
α

σα
i σ α

j +
β2J̃

2N

(∑
α

σα
i σ α

j

)2
⎫⎬
⎭ .

The sparse coupling average may also be taken by standard sparse methods [Mon98]

〈· · ·〉J S
,A =

∏
〈ij〉

⎡
⎣exp

{
− ρ

N

}
exp

⎧⎨
⎩ ρ

N

⎛
⎝〈

exp

{
βx

∑
α

σα
i σ α

j

}〉
φ(x)

⎫⎬
⎭ − 1

⎞
⎠
⎤
⎦ ,

and the field average

〈· · ·〉h =
∏

i

exp

⎧⎨
⎩β(hDbi + hS)

∑
α

σα
i + β2χ2/2

(∑
α

σ α
i

)2
⎫⎬
⎭ .

Introducing the following order parameters, 	:

π(σ) = 1

N

∑
i

δσi ,σ; q̄α = 1

N

∑
i

biσ
α
i ; q〈α1α2〉 = 1

N

∑
i

σ
α1
i σ

α2
i ;

we are able to write the replicated partition function as an integral in the set of order parameters

〈Zn〉 ∝
∫

d	
∑

σ1...σN

I(	) exp{−NG1};

G1 = −βJ0

2

∑
α

q̄2
α − β2J̃

2

∑
α

q〈α1α2〉
2 − ρ

2

∑
σ1,σ2

π(σ)π(σ)〈exp{βxσα1σα2} − 1〉φ

−βhS

∑
σ

π(σ)σα − βhD

∑
α

qα − β2χ2
∑

〈α1α2〉
q〈α1α2〉;

where the function I is an indicator function for the order parameter definitions appendix A.
We note here that there is potentially some redundancy in the definition of order parameters,
this is allowed for a concise and general expression.

Representing each definition in the indicator function by a Fourier transform, introducing
conjugate integration variables denoted with a hat,

∑
σ1...σN

I(	) =
∫

d	 exp{−N(G2 + G3)};

G2 = −
∑

α

q̄α ˆ̄qα −
∑

〈α1α2〉
q̂〈α1α2〉q〈α1α2〉 −

∑
σ

π(σ)π̂(σ);

G3 = − log
∑

σ

〈
exp

{
− b

∑
α

ˆ̄qασα −
∑

〈α1α2〉
q̂〈α1α2〉σ

α1σα2 − π̂(σ)

}〉
b

;

assuming N is the suitable scaling for the conjugate variables. We have finally a site factorized
saddle-point form (5).
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Appendix B. Calculation details for the auxiliary system

In order to construct the auxiliary system we must determine the significance of terms. We
keep terms sufficient to allow a second order description in , which is the perturbation
away from λS = 1 and/or λF

+ = 1, and to allow a second order stability analysis,
restricted to the region where λ(p) < 1 and λF

− < 1. We calculate the expansion of the
complicated entropic term log Tr exp{X } in equation (12) in the reduced set of order parameters{
tα,Qα1α2 ,Qα1α2α3 ,Qα1α2α3α4

}
and to an order fit for purpose. This becomes for b̄ = 1 (v2 = 1)

or b̄ = 0 (v2 = 1 or 0)

−log Tr expX = −
∑

log cosh tα −
∑

log cosh Q̄〈α1α2〉

−
∑

log cosh Q2
〈α1α2α3〉 −

∑
log cosh Q2

〈α1α2α3α4〉

− log Tr
〈∏

[1 + v2 tanh(tα)σα]
〉∏[

1 + tanh
(
Q̄〈α1α2〉

) 2∏
i=1

σαi

]

×
∏[

1 + tanh
(
Q〈α1α2α3〉

) 3∏
i=1

σαi

]∏[
1 + tanh

(
Q〈α1α2α3α4〉

) 4∏
i=1

σαi

]
; (B.1)

the sums and products are ordered in the various terms and are over the corresponding replica
indices. The case of an aligned system and unaligned have simple averages, being distinguished
by v2. The Trace requires a graphical expansion, otherwise various non-linear terms must in
some cases be expanded upto third order. The expansion of (B.1) then gives

−1
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where sums are now over all sets of indices without repeated indices. Finally introducing the
energetic part we have (22).

B.1. Stability analysis for unaligned systems b̄ = 0

We have proposed that, given a sufficient gap between λF
+ and λF

−, then one alignment of the
ferromagnetic solution may be considered dominant and the absolute value and fluctuations
in the converse direction may be ignored. However, if these values are comparable one
must consider an expansion in an additional order parameters to understand the ferromagnetic
phase: tα → {q̄α, qα}. To correct the auxiliary system we make the substitution of the type
tα

i = 〈(qα +bq̄α)i〉b for ith order terms in the entropic part (B.2). There are only two additional
terms at 4 th and 5 th order in the free energy to consider, which couple the two parameters.
This is a complicated expression to evaluate.

Under RS we can anticipate a set of results including {qα �= 0, q̄α = 0} and
{qα = 0, q̄α �= 0} to dominate based on numerical findings and which are both locally
stable (section 6.6). One simple observation is that in the expansion we find that at leading
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orders, excluding critical points, there is symmetry about the line βJ0 = ρT1. By expression
of this equality in the γ, β plane (appendix C) we can observe this is skewed (depending on
the scaling, e.g. only at subleading order (3)) towards higher γ with decreasing temperature.
If the alignment changes monotonically with γ then the point immediately below γc will be
unbiased in alignment at leading order, but favour a dense alignment when the non-linear
dependence is included. This qualitative argument appears consistent with results, but the
discontinuous nature of the transition requires a consideration of more complicated effects.

Appendix C. Triple point analysis

To discriminate between the effects of different subsystems one must make an expansion of
i as a function of δβ and δγ about the triple-point. If we take γ = µT we can attain an
equation for the critical line (36) dependent on the ensemble details

1 = ∂λF

∂γ
(µδβ) +

∂λF

∂β
δβ + O(δβ2) (C.1)

2 = ∂λS

∂γ
(µδβ) +

∂λS

∂β
δβ + O(δβ2). (C.2)

Which gives an equation for the value in which ferromagnetic instability emerges

µ = −1

β

βJ0 − β2J̃ + ρ〈βx(1 − tanh(βx) + tanh2(βx) − tanh3(βx))〉φ(x)

−βJ0
′ + β2J̃

′
/2 + ρ〈βx(1 − tanh(βx) + tanh2(βx) − tanh3(βx))〉φ′(x)

∣∣∣∣∣
βC,γC

. (C.3)

The derivatives in the denominator in J0, J̃ , and distribution φ, denoted by ’ are with respect
to γ . These are taken straightforwardly with linear scaling of couplings (3). The expression is
quite complicated to interpret, but may be simplified further using the criteria for triple point
existence (20) and (17). These expression may be used to find a triple point for a particular
system in variation of some parameters (γ, β) and we can then test whether the dense or spin
induced order dominates as temperature is lowered.

Rewriting the transition line for linear scaling of the Hamiltonian (3), and resubsituting
(20) and (17) we find for the aligned system (b̄ = 1):

(γ − γC) = µ(β − βC) (C.4)

µ = 1

β

−〈D〉 + 〈S〉
〈D〉/(1 − γ ) + 〈S〉/γ

∣∣∣∣
βC,γC

(C.5)

D = tanh(βγ x) − tanh2(βγ x) (C.6)

S = βγ x(1 − tanh(βγ x) + tanh2(βγ x) − tanh3(βγ x)) (C.7)

Where the distribution φ(x), over which averages occur, is by the decomposition (3) now a
distribution independent of γ . Interestingly, this value is independent of the connectivity ρ,
thus percolation properties appear not to be an important effect in the RS order stability in the
vicinity of the triple-point. This connectivity independence is true for more general scaling
scenarios than (3); whenever the derivatives of J0, J̃ with respect to γ are proportional to
J0, J̃ , one can make substitutions to write the expression as functions of only φ, γ, β. For
b̄ �= 1, this is not necessarily possible though certain properties are similar. The expressions
S and D are shown in figure (C1), it is clear that if φ is negative in mean or has large variance
then for most distributions 〈D〉 and 〈S〉 are negative, with 〈D〉 < 〈S〉. If the distribution is
positive in mean and of relatively small variance then 〈D〉 and 〈S〉 will be positive, with 〈D〉
the larger. However, this is not a general result and exceptions may be constructed.

27



J. Phys. A: Math. Theor. 41 (2008) 324014 J R Raymond and D Saad

0
5

D

S
y=x

y

y

x

0.
5

0.
5

0

Figure C1. The dashed lines indicate the quantity D (C.6) and the solid lines the quantity S
(C.7). If one has a particular distribution of sparse couplings φ then at the triple-point one can
integrate over these distributions to determine the quantities and hence the nature of reentrant
behaviour—whether the weakly ordered systems are dominated by dense or sparse type order, we
find the former in canonical cases. If the variance of the distributions is sufficient the integral for
both quantities is negative. If the distribution is of positive mean with low variance both quantities
will be positive. It is possible to generate many distributions for which the above generalizations
do not hold, and reentrant behaviour of an alternative type may occur.

Appendix D. Population dynamics numerical implementation

The population dynamics is implemented such that the fields are assigned randomly at time
t = 0 in three histograms (real replica) simultaneously. We consider the development from
initial conditions corresponding to frozen ferromagnetic, SG and near paramagnetic (high
temperature) initial condition histograms. The corresponding Gaussian distributions are

P
(
h

(0)
i

) = N (1000, 0), N (0, 1) and N (0, 0.001), (D.1)

We also add an additional (fourth) histogram with ferromagnetic order along the dense
alignment when b̄ �= 1, and initialize b

(0)
i to ±1 with probabilities determined by b̄.

Since the representative low-temperature order parameters are overestimated in the former
two, and underestimated in the latter, we can be confident a solution converged to by all three
will not be systematically biased. However, in the case of multiple locally stable solutions
these replica remain disparate, but cover a representative set of solutions quite well (e.g.
b̄ = 0). This parallelism is at the cost of runtime, but we found drift, or metastability, to be
prevalent effects justifying the method.

It is also useful to consider fluctuations of the solutions within a single histogram
in successive time steps (N field updates). We judge convergence in both cases through
consideration of the order parameters q1, q̄1, and q2. This is insufficient for a system involving
sparse interactions since the distribution is then not Gaussian, but appears nevertheless to be
quite robust and comparable to other heuristic methods attempted. The criteria for termination
of the algorithm is that the distributions based on all 3 (4) initial conditions and between
successive updates converges in q1, q̄1 and q2 to within a worst case absolute precision of 0.01.
Finite size fluctuations and runtime constraints prevent a significantly stronger precision.

The field updates of (45) are random and non-sequential—but ensuring that in each time
step, each field is updated exactly once.

We found in almost all cases that histograms converged to a single unique distribution
(upto finite size errors), and that this convergence was robust. When convergence criteria is
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met we analyse the histogram (replica) of lowest free energy as representative. Measurables
are determined following convergence based on 20 samples over 20 time steps. For certain
systems we ran upto 20 independent runs (different pseudo random update sequences) to check
the properties were unique and fully explore the space.

In the case of non-convergence by the moments criteria we halt the algorithm after 500
time steps and consider the histogram that corresponds to the lowest free energy (amongst the
different initial condition histograms), calculating quantities based on this choice. In the case
that metastable solutions exists this is sufficient to identify the histogram corresponding to a
dominant state. This occurred only for certain systems with opposite ferromagnetic alignment
(b̄ = 0). In all other cases it appeared solutions are in the vicinity of the correct saddlepoint
but converging with different biases; thus identifying the solution of lowest free energy does
not guarantee improved measurement of the statistics in this case. However, we judge the
statistics collected to be close in most cases.

D.1. Stability

We associate with each field in the population dynamics a perturbation δh2
i , these are initially

chosen with a Gaussian distribution independent of the field. With γ > 0 convergence to a
non-Gaussian joint distribution of perturbations and fields must be considered, we observed
this to occur very quickly as can be determined in correlation functions and kurtosis, e.g.〈
δ
(
ht

i

)2(
ht

i

)2〉
C

and
〈
δh4

i

〉
, but could not produce a robust measure of convergence of the

fluctuation distribution. Following convergence in the order parameters, we introduce the
field and following 10 time steps collect data over 20 time steps. Distribution of perturbations
are carefully renormalized throughout analysis to account for the non-sequential updates, and
the renormalization after each time-step provides an estimate for χ2. Certain other numerical
hacks must be brought to bear to prevent divergences in the cases where χ2 is not close to 0.
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